Package: bolasso 0.3.0
bolasso: Model Consistent Lasso Estimation Through the Bootstrap
Implements the bolasso algorithm for consistent variable selection and estimation accuracy. Includes support for many parallel backends via the future package. For details see: Bach (2008), 'Bolasso: model consistent Lasso estimation through the bootstrap', <doi:10.48550/arXiv.0804.1302>.
Authors:
bolasso_0.3.0.tar.gz
bolasso_0.3.0.zip(r-4.5)bolasso_0.3.0.zip(r-4.4)bolasso_0.3.0.zip(r-4.3)
bolasso_0.3.0.tgz(r-4.4-any)bolasso_0.3.0.tgz(r-4.3-any)
bolasso_0.3.0.tar.gz(r-4.5-noble)bolasso_0.3.0.tar.gz(r-4.4-noble)
bolasso_0.3.0.tgz(r-4.4-emscripten)bolasso_0.3.0.tgz(r-4.3-emscripten)
bolasso.pdf |bolasso.html✨
bolasso/json (API)
NEWS
# Install 'bolasso' in R: |
install.packages('bolasso', repos = c('https://dmolitor.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/dmolitor/bolasso/issues
Pkgdown site:https://www.dmolitor.com
- transactions - Customer transaction data
bolassobootstraplassovariable-selection
Last updated 1 months agofrom:b694f083d7. Checks:7 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 20 2025 |
R-4.5-win | OK | Jan 20 2025 |
R-4.5-linux | OK | Jan 20 2025 |
R-4.4-win | OK | Jan 20 2025 |
R-4.4-mac | OK | Jan 20 2025 |
R-4.3-win | OK | Jan 20 2025 |
R-4.3-mac | OK | Jan 20 2025 |
Exports:bolassoplot_selected_variablesplot_selection_thresholdsselected_variablesselected_varsselection_thresholdstidy
Dependencies:clicodetoolscolorspacedigestfansifarverforeachfuturefuture.applygamlrgenericsggplot2glmnetglobalsgluegtableisobanditeratorslabelinglatticelifecyclelistenvmagrittrMASSMatrixmgcvmunsellnlmeparallellypillarpkgconfigprogressrR6RColorBrewerRcppRcppEigenrlangscalesshapesurvivaltibbleutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Bootsrap-enhanced Lasso | bolasso |
Plot selected variables from a 'bolasso' object. | plot_selected_variables |
Plot each covariate's smallest variable selection threshold | plot_selection_thresholds |
Plot a 'bolasso' object | plot.bolasso |
Bolasso-selected Variables | selected_variables selected_vars |
Calculate each covariate's smallest variable selection threshold | selection_thresholds |
Tidy a bolasso object | tidy.bolasso |
Customer transaction data | transactions |